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NONLINEAR SCHWARZ-FAS METHODS FOR UNSTRUCTURED 
FINITE ELEMENT ELLIPTIC PROBLEMS 

JIM E. JONES, PANAYOT S. VASSILEVSKI AND CAROL S. WOODWARD 

ABSTRACT. This paper provides extensions of an element agglomeration AMG 
method to nonlinear elliptic problems discretized by the finite element method on 
general unstructured meshes. The method constructs coarse discretization spaces 
and corresponding coarse nonlinear operators as well as their Jacobians. We intro- 
duce both standard (fairly quas-uniformly coarsened) and non-standard (coars- 
ened away) coarse meshes and respective finite element spaces. We use both kind of 
spaces in FAS type coarse subspace correction (or Schwarz) algorithms. Their per- 
formance is illustrated on a number of model problems. The coarsened away spaces 
seem to perform better than the standard spaces for problems with nonlinearities 
in the principal part of the elliptic operator. 

1. INTRODUCTION 

We are interested in solving the nonlinear algebraic equations arising from finite 
element discretizations of nonlinear second order elliptic PDEs using finite elements. 
To be specific, consider the second order elliptic PDE, 

(1.1) -v * (a(x ,  u, Vu)Vu) + g ( x ,  u, Vu)u = f, 
posed on a polygonal domain R E R2 with Dirichlet boundary conditions, u = 0 on 
82. The functions a = a(x ,  u, v) > 0, g = g(x, u , ~ )  2 0, and f = f(x) are given. 
In what follows, we assume that the functions a, g and their first partial derivatives 
can be analytically evaluated for any value of their arguments. 

The remainder of this short paper is structured as follows. We first introduce the 
discretization scheme, then we derive the coarse (non-inherited) nonlinear operators 
based on agglomeration AMGe (as proposed in [SI). Finally we formulate a stan- 
dard nonlinear Schwarz-FAS algorithm for solving the resulting system of nonlinear 
equations exploiting coarse subspace and respective coarse nonlinear operators. The 
performance of the method is illustrated in the final section. 

2. DISCRETIZATION 

The equation (1.1) posed variationally defines the following nonlinear operator L 

( ~ u ,  y) = J [a(x ,  u, vu)vu - vy + g(x, u, vu)uyl dx. 
R 
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Given a triangulation 7 = (7') of R and associated finite element space V = Vh, one 
can discretize C, leading to a mapping of the form F ( u ) u  which can be evaluated 
elemenbwise based on the weighted element matrices, 

Here { A T }  and { G T }  stand for the element matrices of the Laplace operator and 
the mass element matrices. Also, x T ,  U T ,  and (Vu)T stand for averaged values over 
every element T.  

In order to compute the Jacobian of F ( v ) v  at vo (vo), J ( v o ) ,  one can use the 
following formulas. Let, a = a(v,  v,, v,) and g = g ( v ,  vz, v,) and assume that one can 
analytically compute the partial derivatives 

The corresponding formula for J ( v o ) ,  for any w and v, then reads, 

wTJ(vo)v = wTF(vo)v (Picard linearization) 

Here, we need averaged values (.)T of any vector (function) and its derivatives. 

3. COARSENING 

A coarse nonlinear operator C H ,  for a coarse finite element space V H  (constructed 
by AMGe, in the form proposed in Jones and Vassilevski [6], for example) is defined, 
for u, p E V H ,  by 

r 

+ g ( z T ,  UT,   vu)^) Ju'p dXJ 9 

T 

where x T ,  wT, and (Vu)T are averaged values over every element 5". In matrix-vector 
form this reads, for u,'p E V H ,  and their respective coefficient vectors restricted to 
any element T ,  UT and gT,  

(LHu, 'p) E u; (a ( zT ,  U T ,  (Vu)T)AT + g ( m ' ,  U T ,  (Vu)T)GT) g3.- 
T €  TH 
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Here {AT} and {GT} stand for the coarse element matrices of the Laplace operator 
and the mass element matrices. 

Thus one needs an element averaging procedure ( - ) T  on all grids. 

3.1. Computing derivatives on coarse grids by element averaging. The fol- 
lowing simple element-wise approximations to the derivatives are feasible, 

1 
XTAyu, -- Y ~ A ~ U ,  

1 SUI N- 

L3x - (TI ay T - (TI 
1 &I  N -  Z ~ A ~ U .  

- IT( 

This is motivated by the equalities, 

T 
j U /  T 

The relation (“21”) is actually equality if u is linear over T .  
Similarly, one can perform element averaging of u based on GY., 

1 
1.u dx = - ( l ) T G ~ ~ T .  uIT N ’ J  T IT1 

Here, X ,  Y ,  2 and 1 stand for the vector representations of the linear functions 
x,y,z ,  and 1. 

4. SCHWARZ-FAS AMGE ALGORITHM 

Consider the fine grid nonlinear problem 

F(u)u = f ,  

and let uo be a given initial approximation. Also, let the coarse subspaces Vk and 
the respective interpolation matrices p k  : VI, I+ v be given. Finally, let I k  be a 
simple (injection) operator which restricts a fine-grid vector to a coarse grid one in 
vk. 

Then one performs the following steps to get a next approximation to u. 

Algorithm 4.1 (Subspace Correction- FAS Method). 
For k = 1, . . . , p  loop over the coarse subspaces vk: 

T (1) restrict global residual r = f - F(u)u to Vk, i.e., r k  = Pk r. 
(2) solve (e.g., using Newton’s method) the coarse nonlinear problem 

Fk (uk)uk = fk 

with an initial approximation ui = Iku and a right-hand side fk = rk + 
(3) interpolate the coarse grid correction uk - u: and update the f ine grid 

Fk(ui)ui- 

approximation; that is, 

u := u + pk(uk - .It). 
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0 an optional 4$~~t-~moothing’’ step; for example, a few nonlinear Gauss-Seidel 

0 the new nonlinear FAS iterate is u := u 4- 5. 
iterations. 

For details on theory regarding the structured finite element case, cf. Dryja and 
Hackbusch [5], Xu [ll], Tai and Espedal [9],  Tai and Xu [lo], and for the classical 
FAS method, cf. Brandt [3] and Briggs et al. [4]. 

For some other multigrid approaches for nonlinear diffusion equations on unstruc- 
tured meshes, cf., Mavriplis [7]. 

5. A NONLINEAR TEST PROBLEM 

Consider a nonlinear elliptic problem with more general nonlinearity: 

-v - (a(u, Vu) Vu) + u3 = f ,  

in R = (0, 1)2 with Dirichlet boundary conditions. Here, a(u, Vu) = d&, e+u2+,Vu,  e =  

0.001. The r.h.s. function f is chosen such that u = x(1 - x)y(l - y) is the exact 
solution. 

The initial iterates for the FAS subspace correction method were chosen 0.9 times 
the true solution. The iterations are terminated after relative residual 12--norm re- 
duction of the initial residual by a factor of has been achieved. 

5.1. Coarsened away meshes. The coarse spaces corresponded to our AMGe- 
constructed ones. The coarse agglomerated elements are obtained by first partitioning 
the initial set of fine elements using METIS into “# domains” subsets, then the el- 
ements in a given subdomain were selected (fixed) allowing for agglomeration only 
the elements that are more than one layer away from the fixed set of elements on the 
previous level. Thus one ends up with algebraically constructed finite element spaces 
of small dimension but of global nature. This is illustrated in Fig. 1 and Fig. 2. 

Then the thus constructed coarse spaces, operators and their Jacobians are used 
in Algorithm 4.1 and in a non-linear preconditioned GCG method (cf. [l]) where 
the fine-grid Jacobian is preconditioned with additive Schwarz preconditioner coming 
from the coarsened away spaces. The results are found in Tables 1 and 2. 
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FIGURE 1. Fine mesh partitioned into four mesh subdomains: 1,600 
.fine elements, 2460 fine degrees of freedom. Each subdomain consists 
of 400 elements and is represented by a single color. 
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FIGURE 2. An ugglomerution bused coursened uwuy mesh: 1 , 600 fine 
elements, 4 66 ugglomeruted elements, 400 subdomuin elements, 270 
course de-qrees of freedom. Each color represents un u~r/lomerute. 
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# domains 400 elements 
4 10 
8 9 
16 12 
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1600 elements 6400 elements 25600 elements 
10 12 14 
11 16 17 
15 15 * 

TABLE 1. Unstructured triangular grids; number of iterations of FAS 
subspace correction method with smoothing. 

# domains 400 elements 1600 elements 6400 elements 
4 3 3 3 

25600 elements ’ 
4 

TABLE 2. Unstructured triangular grids; number of iterations of pre- 
conditioned nonlinear GCG method. Each second row shows the total 
number of preconditioned (with additive Schwarz Jacobian precondi- 
tioner) GCG iterations for inexact solving with fine-grid Jacobians for 
achieving relative tolerance 0.0001. 

8 

16 

47 67 92 196 
3 3 3 3 
59 72 102 136 
3 3 3 4 
73 100 149 204 J 
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